äRQüïMëDëS
07.08.2011 14:48Arquímedes
(Siracusa, actual Italia, h. 287 a.C.-id., 212 a.C.) Matemático griego. Hijo de un astrónomo, quien probablemente le introdujo en las matemáticas, Arquímedes estudió en Alejandría, donde tuvo como maestro a Conón de Samos y entró en contacto con Eratóstenes; a este último dedicó Arquímedes su Método, en el que expuso su genial aplicación de la mecánica a la geometría, en la que «pesaba» imaginariamente áreas y volúmenes desconocidos para determinar su valor. Regresó luego a Siracusa, donde se dedicó de lleno al trabajo científico.
Arquímedes
De la biografía de Arquímedes, gran matemático e ingeniero, a quien Plutarco atribuyó una «inteligencia sobrehumana», sólo se conocen una serie de anécdotas. La más divulgada la relata Vitrubio y se refiere al método que utilizó para comprobar si existió fraude en la confección de una corona de oro encargada por Hierón II, tirano de Siracusa y protector de Arquímedes, quizás incluso pariente suyo. Hallándose en un establecimiento de baños, advirtió que el agua desbordaba de la bañera a medida que se iba introduciendo en ella; esta observación le inspiró la idea que le permitió resolver la cuestión que le planteó el tirano. Se cuenta que, impulsado por la alegría, corrió desnudo por las calles de Siracusa hacia su casa gritando «Eureka! Eureka!», es decir, « ¡Lo encontré! ¡Lo encontré!».
La idea de Arquímedes está reflejada en una de las proposiciones iniciales de su obra Sobre los cuerpos flotantes, pionera de la hidrostática; corresponde al famoso principio que lleva su nombre y, como allí se explica, haciendo uso de él es posible calcular la ley de una aleación, lo cual le permitió descubrir que el orfebre había cometido fraude.
Según otra anécdota famosa, recogida por Plutarco, entre otros, Arquímedes aseguró al tirano que, si le daban un punto de apoyo, conseguiría mover la Tierra; se cree que, exhortado por el rey a que pusiera en práctica su aseveración, logró sin esfuerzo aparente, mediante un complicado sistema de poleas, poner en movimiento un navío de tres mástiles con su carga.
Son célebres los ingenios bélicos cuya paternidad le atribuye la tradición y que, según se dice, permitieron a Siracusa resistir tres años el asedio romano, antes de caer en manos de las tropas de Marcelo; también se cuenta que, contraviniendo órdenes expresas del general romano, un soldado mató a Arquímedes por resistirse éste a abandonar la resolución de un problema matemático en el que estaba inmerso, escena perpetuada en un mosaico hallado en Herculano.
Esta pasión de Arquímedes por la erudición, que le causó la muerte, fue también la que, en vida, se dice que hizo que hasta se olvidara de comer y que soliera entretenerse trazando dibujos geométricos en las cenizas del hogar o incluso, al ungirse, en los aceites que cubrían su piel. Esta imagen contrasta con la del inventor de máquinas de guerra del que hablan Polibio y Tito Livio; pero, como señala Plutarco, su interés por esa maquinaria estribó únicamente en el hecho de que planteó su diseño como mero entretenimiento intelectual.
El esfuerzo de Arquímedes por convertir la estática en un cuerpo doctrinal riguroso es comparable al realizado por Euclides con el mismo propósito respecto a la geometría; esfuerzo que se refleja de modo especial en dos de sus libros: en los Equilibrios planos fundamentó la ley de la palanca, deduciéndola a partir de un número reducido de postulados, y determinó el centro de gravedad de paralelogramos, triángulos, trapecios, y el de un segmento de parábola. En la obra Sobre la esfera y el cilindro utilizó el método denominado de exhaustión, precedente del cálculo integral, para determinar la superficie de una esfera y para establecer la relación entre una esfera y el cilindro circunscrito en ella. Este último resultado pasó por ser su teorema favorito, que por expreso deseo suyo se grabó sobre su tumba, hecho gracias al cual Cicerón pudo recuperar la figura de Arquímedes cuando ésta había sido ya olvidada.
¿ ¿ Te has preguntado alguna vez porque los cuerpos pesan menos dentro del agua que fuera de ella? Esto mismo se lo preguntó Arquímedes de Siracusa(c. 287 a. C. – c. 212 a. C.) un matemático
griego, ingeniero, físico y astrónomo. Cuenta la historia que una corona con forma de corona triunfal iba a ser fabricada para el rey Hieron II. Este entrego al joyero una pieza de oro. Debía estar hecha completamente de oro. Pero este era desconfiado y quiso averiguar si estaba fabricado todo de oro o si habían agregado otro metal (según él, que no fuera digno de su poder) que enturbiase su corona. Por esto hizo llamar a Arquímedes con el único fin de comprobar experimentalmente si el joyero había sido honrado o no. Una noche mientras seguía pensando cómo podía resolver algo tan difícil le llego la hora del baño. Pero al meterse se percató que el niv
el del agua subía y dedujo que así podría calcular el volumen de la corona. Arquímedes salió corriendo de la bañera gritando ¡Eureka!; sin percatarse de que iba sin ropa. Con ese dato y el de la masa (que ya sabía) pudo calcular la densidad de la corona. Esta debía desalojar la misma cantidad de agua que una pieza de oro que tuviera la misma masa, es decir, debían de tener la misma densidad. Si la corona no estaba hecha completamente de oro su densidad seria menor. Pudo demostrar que el joyero había usado otros materiales para quedarse con parte del oro, teniendo la precaución de que la corona al final pesara lo mismo que la pieza de oro inicial. No se sabe si en verdad esto pasó realmente pues no aparece en los trabajos conocidos de Arquímedes y que pudiera ser el comienzo para el descubrimiento de su principio.
Hoy sabemos gracias a él que su famoso principio de Arquímedes se formula matemáticamente de la siguiente manera:
Empuje(N)= Densidad del líquido (Kg/m3) ·Volumen del cuerpo (m3) · Gravedad (9'8m/s2)
Su principio se enuncia de la siguiente forma:
Todo cuerpo sumergido en un liquido experimenta un empuje vertical y hacia arriba igual al peso del líquido desalojado.
A la derecha (arriba) una imagen del principio de flotabilidad una posibilidad que pudo usar para el misterio de la corona. Debajo una simpática caricatura de Arquímedes y su exclamación que tanta fama ha cogido.
———
Volver